SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTTTIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.
(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.
(Certain important physical constants.)
F Faraday's constant.
J Mechanical equivalent of heat.
N Avogadro's number.
$\boldsymbol{R}\left\{\begin{array}{l}\text { Gas constant per mol. } \\ \text { Rydberg's constant. }\end{array}\right.$
e Velocity of light in vacuo.
e Electronic charge (charge equal and opposite in sign to that of an electron).
$g$ Acceleration due to gravity (standard value, if variation from standard is significant).
h Planck's constant.
k Boltzmann's constant.
$\boldsymbol{m}$ Rest mass of an electron.
2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.
Length
mean free path of molecules . . . . $l l$
height . . . . . . . . $h$
diameter, distance . . . . . d diameter of molecules . . . . $\sigma$
radius . . . . . . . . $r$
Mass . . . . . . . . $m$
molecular weight . . . . . . $M$
atomic weight . . . . . . $A$
atomic number . . . . . . $Z$
gram-equivalent weight . . . . . $Z, J$
Time . . . . . $t$
time interval, especially half- or mean-life . $\tau$
frequency . . . . . . . $v$
Velocity . . . . . . . . $v ; c,(u, v, w)$
of ions . . . . . . . $u$ (with subscript)
angular . . . . . . . $\omega$
Acceleration . . . . . . . f... a
due to gravity (as variable) . . . $g$
Force . . . . . . . . $F,(X, Y, Z)$
Moment of inertia . . . . . . $I$
Pressure . . . . . . . . $p, P$
especially osmotic . . . . . . $\Pi$
Volume . . . . . . . . v, ${ }^{1}$
Density . . . . . . . .. . d
Compressibility . . . . . . к . . K


Heat and Thermodynamics.
Temperature, on absolute scale, ( ${ }^{\circ}$ к) . . . $T$ on other scales . . . . $\theta$
Thermal conductivity . . . . . $k$
Energy (general symbol) . . . . . E
Work done by or on a system . . . . w . . W
Heat entering a system . . . . . $q$
Specific heat . . . . . . . $c_{p}$ and $c_{p}$ molecular heat . . . . . . $C_{p}$ and $C$
Ratio of specific heats
Latent heat, per g.
$\gamma$
per mol . . . . $L$
Intrinsic energy . . . . . U
Enthalpy, total heat, or heat content . . . H
Entropy . . . . . . . . S
Free energy (Helmholtz) . . . . . A . . F
Thermodynamic potential, Gibbs function, free energy (G. N. Lewis) . . . . . $G$
Vapour pressure constant . . . . . $i$
Chemical potential . . . . . . $\mu$
Activity . . . . . . . . $a$
coefficient (for molar concentration) . . $f$
Osmotic coefficient . . . . . . g
Van 't Hoff's factor . . . . . i

## Electricity.

Quantity of electricity . . . . O
especially electrostatic charge . . . e
Potential (difference) . . . . . $V$
Volta potential . . . . . . J
electrokinetic potential . $\quad$ especially electromotive force of voltaic cells . $\quad$ E
Potential gradient, in electric field . . . $X$
Electronic exit work function . . . . $\phi$


Optics.

3. To be Printed in Roman, when not Greek.
(a) Examples of Mathematical Constants and Operators.

Base of natural logarithms . . . . e
Ratio of circumference to diameter . . . $\pi$
Differential . . . . . . . d
partial . . . . . . . $\partial$

Increment . . . . . . $\Delta$
very small increment . . . . . $\delta$
Sum . . . . . . . . $\Sigma$
Product . . . . . . . . $\Pi$
Function . . . . . . . f, $\phi$
(b) Examples of single-letter abbreviations.

| *Ampère (in sub | b-units) |  |  |  |  | a. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volt | . . | . |  |  | . | v. |
| Ohm | - . | . |  |  |  | $\Omega$. |
| Watt | - . | . |  |  |  | w. |
| Farad | . . | - |  |  |  | . F. |
| Henry | . - | . | . |  |  | H. |
| Centigrade | . . | . | . | - |  | c. |
| Fahrenheit | . . | - | . | . | . | F. |
| Kelvin | . $\cdot$ | . | . |  | . | к. |
| Ångstrom unit | . | . | . | - |  | A. |
| micron | . . | . | . | - | . | - $\mu$. |
| metre | - . | - | . | - |  | m. |
| gram | . | . | . | . |  | g. |
| litre | . $\quad$. | . |  |  |  | 1. |
| Röntgen unit . |  | . |  | . |  | . r . |
| $\dagger$ Normal (concen | entration) |  |  |  |  |  |
| $\dagger$ Molar (concent | tration) |  |  |  |  | . M |

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

| M | mega- | $10^{6} \times$ |
| :--- | :--- | :--- |
| k | kilo- | $10^{3} \times$ |
| d | deci- | $10^{-1} \times$ |
| c | centi- | $10^{-2} \times$ |
| m | milli- | $10^{-3} \times$ |
| $\mu$ | micro- | $10^{-6} \times$ |

e.g., M $\Omega$. denotes megohm; kw., kilowatt ; and $\mu \mathrm{g} .$, microgram. The use of $\mu \mu$. instead of $m \mu$. to denote $10^{-7} \mathrm{~cm}$., or of $\gamma$ to denote microgram is deprecated.

## 4. Subscripts and otber Modifying Signs.

(a) Subscripts to symbols for quantities.

|  | fespecially with symbols for thermodynamic functions, referring |
| :---: | :---: |
|  | I different systems or different states of a system. |
| в. | referring to molecular species $\mathrm{A}, \mathrm{B}$, etc. |
| ${ }^{\text {A B }}$ | referring to a typical ionic species $i$. |
| a | referring to an undissociated molecule. |
|  | referring to a positive or negative ion, or to a positive | electrode.

indicating constant pressure, volume, and temperature respectively.
indicating adiabatic conditions.
indicating that no work is performed.
p, e. a with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
$G, \mathbf{V}, \mathbf{L}, \mathbf{X}$
$t, e, B, t, d$
-
0
referring to gas, vapour, liquid, and crystalline states, respectively.
referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
referring to the critical state or indicating a critical value.
referring to a standard state, or indicating limiting value at infinite dilution.

- E.g. " ma." for " milliampère "; but " amp." is preferred for " ampère."
$\dagger$ Separated by a hyphen (and no full stop) from a chemical formula which follows it.
$0, D \mathrm{~F}$
with symbols for optical properties, referring to a particular wavelength.
Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.
(b) Other modifying signs.
- as right-hand superscript to symbol (particularly tò a symbol for a general thermodynamic function-see p. 718), referring to a standard state.
[] enclosing formula of chemical substance, indicating its molar concentration.
\{ \} enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that .
Millerian indices be enclosed in parentheses, () ;
Laue indices be unenclosed;
Indices of a plane family be enclosed in braces, $\}$;
Indices of a zone axis or line be enclosed in brackets, [ ].
Numerals attached to a symbol for a chemical element in various positions have the following meanings:
upper left mass number of atom.
lower left nuclear charge of atom.
lower right number of atoms in molecule.
e.g., ${ }_{3}^{7} \mathrm{Li} ;{ }_{1}^{2} \mathrm{H}_{2}\left(=\mathrm{D}_{2}\right)$.

## ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.
A free energy-Helmholtz ; atomic weight; surface area.
A. Ångstrom unit.
a activity; (acceleration).
a. ampère, in sub-units--see footnote, p. 988.
$B$ magnetic induction.
$C$ concentration; electrostatic capacity.
with subscript : molecular heat capacity.
c. Centigrade.
c velocity of light in vacuo.
c velocity; concentration.
with subscript: specific heat.
$D$ diffusion coefficient.
d diameter; distance; (density).
d differential.
$\partial$ partial differential.
$E$ energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
with subscript : single electrode potential.
e electronic charge-charge equal and opposite in sign to that of an electron.
$e \quad$ quantity of electricity, especially electrostatic charge.
roith subscript : single electrode potential.
e base of natural logarithms.
F Faraday's constant.
$F$ force; (free energy-Helmholtz).
F. farad; Fahrenheit.
$f$ acceleration; activity coefficient, for molar concentration; partition function.
$f$ function.
$G$ thermodynamic potential, Gibbs function, free energy-G. N. Lewis.
$g$ acceleration due to gravity, standard value.
$g$ acceleration due to gravity, as a variable; osmotic coefficient.
g. gram.
$H$ enthalpy, total heat, heat content; magnetic field strength.
H. henry.
h Planck's constant.
$h$ height.
I moment of inertia; ionic strength; electric current; intensity of light.
$i$ vapour pressure constant; van 't Hoff's factor.
J mechanical equivalent of heat.
$J$ gram-equivalent weight.
$K$ chemical equilibrium constant; (compressibility). $K_{\text {s }}$ solubility product.
к. Kelvin.
\& Boltzmann's constant.
$k$ thermal conductivity; velocity constant of chemical reaction.
$L$ latent heat per mol; self inductance; (solubility product).
l latent heat per g.; length; mean free path of molecules.
with subscript : equivalent ionic conductance, " mobility".

1. litre.
$M$ molecular weight; mutual inductance; magnetic moment.
M. molar concentration.
$m$ rest mass of an electron.
$m$ mass.
m. metre.

N Avogadro's number.
$N$ mol fraction.
N. normal concentration.
$n$ number of mols.
with subscript : (transport number).
with subscript : refractive index.
$P$ pressure.
$[P]$ parachor.
$p$ pressure.
$Q$ quantity of electricity.
$q$ heat entering a system.
R gas constant per mol ; Rydberg's constant.
$R$ electrical resistance.
$[R]$ with subscript : molecular refraction.
$r$ radius; (specific resistance).
with subscript: specific refraction.
r. Röntgen unit.
$S$ entropy.
$s$ solubility; (surface area).
$T$ temperature, on absolute Kelvin scale.
with subscript: transport number.
$t$ time; (temperature-not on absolute scale).
$U$ intrinsic energy.
u velocity component. with subscript: velocity of ions.
$V$ volume; potential, potential difference, including Volta potential.
v. volt.
$v$ volume; velocity; velocity component.
$W$ (work done by or on a system).
w. watt.
w work done by or on a system; velocity component.
$X$ force component; potential gradient in electric field.
$x$ mol fraction.
$Y$ force component.
$Z$ force component; g.-equivalent weight; number of molecular collisions per second; atomic number. valency of an ion.
$\alpha$ degree of electrolytic dissociation; angle of optical rotation.
$[\alpha]$ specific optical rotation.
$\bar{\Gamma}$ surface concentration excess.
$\gamma \quad$ ratio of specific heats; surface tension.
$\Delta$ increment.
$\delta$ very small increment.
$\epsilon$ dielectric constant; molar extinction coefficient.
$\zeta$ electrokinetic potential.
$\eta$ efficiency of any process; viscosity; electrolytic polarisation, overvoltage. angle of contact; temperature-not on absolute scale.
$\boldsymbol{\kappa}$ compressibility; specific conductance; magnetic susceptibility-volume.
$\Lambda$ equivalent conductance.
$\lambda \quad$ wave length.
$\mu \quad$ chemical potential ; dipole moment; magnetic permeability. with subscript : (refractive index).
$\mu$. micron. ${ }^{\prime}$
$v$ frequency; wave number.
$\Pi$ pressure, especially osmotic pressure.
II product.
$\pi \quad$ (electrolytic polarisation, overvoltage).
$\pi \quad$ ratio of circumference to diameter.
$\rho$ density; specific resistance.
$\Sigma$ sum.
$\sigma$ diameter of molecules; (surface tension) ; (specific conductance).
$\tau$ time interval, especially half or mean life.
$\phi$ fluidity; electronic exit work function; magnetic flux.
$\phi$ function.
$\chi$ magnetic susceptibility-mass.
$\psi$ wave function.
』. ohm.
$\omega$ angular velocity; specific magnetic rotation.

