SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- Faraday's constant. F
- Mechanical equivalent of heat. J
- N Avogadro's number.
- Gas constant per mol. Rydberg's constant. R
- Velocity of light in vacuo. C
- Electronic charge (charge equal and opposite in sign to that of an electron). e
- Acceleration due to gravity (standard value, if variation from standard is g significant).
- Planck's constant. ħ
- Boltzmann's constant. k
- Rest mass of an electron. m

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

Length			•			•	b
mean free path	n of r	nolecu	les				∫ °
height .							h
diameter, distand	ce	_					d
diameter of me	olecu	les					σ
radius .				÷		÷	r
Mass	•	•	•	•	•	•	т
molecular weight	: .	•	•	•	•	•	M
atomic weight	•	•	•	•			A
atomic number		•	•				Ζ
gram-equivalent	weig	ht.	•				Z, J
Time							t
time interval es	heria	Ilv hal	f_ 07 1	nean-	life	•	τ τ
frequency	Julia	ny nai	1- 01 1	incan-	me	•	,
nequency.	•	•	•	•	•	•	V
Velocity		•		•			v; c, (u, v, w)
of ions .		•	•		•		<i>u</i> (with subscript)
angular .			•				ω
Acceleration .							fa
due to gravity (a	s vai	riable)					g
E		-					
Force	•	•	•	•		•	F, (X, Y, Z)
Moment of mertia	•	•	•	•	•	•	1
Pressure	•	•	•	•	•	•	<i>р</i> , Р
especially osmoti	с.	•	•	•	•	•	Π
Volume					•		v. ^{[/}
Density				•	•		od
Compressibility							<i>кК</i>

Viscosity $\substack{\eta\ \phi}$ Fluidity . A . . . s Surface area . . . θ Angle of contact . . . Surface tension γ...σ . [P]Parachor • . • Г Surface concentration excess . Number of mols n • Concentration, mol fraction N, **x** • . . . in other terms с. C Solubility S • • . . D Diffusion coefficient Chemical equilibrium constant (products/reactants) K K. . . . L . . . k • • Ζ Number of molecular collisions per second . • f Partition function . . . • . Efficiency, of any process . η Wave function ψ •

Heat and Thermodynamics.

Temperature, on absolute	scale,	(°K)	•	•	•	T
on other sca	les	•	•	•	•	$\theta \dots t$
Thermal conductivity	•	•	•	•	•	k
Energy (general symbol)						Ε
Work done by or on a syst	tem	•	•	•	•	wW
Heat entering a system	•	•	•	•	•	q
Specific heat	•	•	•	•	•	c_p and c_v
molecular heat .	•	•	•	•	•	$C_{\mathbf{p}}$ and C
Ratio of specific heats	•	•	•	•	•	γ
Latent heat, per g	•	•	•	•	•	l
per mol	•	•		•	•	L
Intrinsic energy .						$U \ldots E$
Enthalpy, total heat, or h	eat co	ontent	•			H
Entropy		•	•	•		S
Free energy (Helmholtz)	•	•	•	•		$A \ldots F$
Thermodynamic potentia	l, Gil	bbs f	unctic	on, fro	ee	
energy (G. N. Lewis)	•	•	•	•	•	G
Vapour pressure constant	•	•	•	•	•	i
Chemical potential .		•	•	•		μ
Activity	•	•	•	•	•	a
coefficient (for molar co	ncent	ratior	1)	•	•	f
Osmotic coefficient .	•	•	•	•		g
Van 't Hoff's factor .	•		•	•	•	i

Electricity.

Quantity of electricity				•		0
especially electrostatic c	harge		•	•		е
Potential (difference)				•	• `	V
Volta potential .				•	• ,	ĵ "
electrokinetic potential			•		•	ζ
especially electromotive	force	of vo	ltaic o	cells		Ε
Potential gradient, in elec	tric fie	eld	•			Х
Electronic exit work funct	ion					ϕ

987

Current . Resistance . specific resistance specific conductan	ce			• • •	• • •	• • •	<i>Ι</i> <i>R</i> <i>ρr</i> <i>κ</i> σ
Inductance, self mutual Electrostatic capacit Dielectric constant	· · ·	•	• • •	• • •	• • •	• • •	L Μ. C ε
Dipole moment	•	•	•	•	•	•	μ
		1	Electro	chemi	stry.		
Degree of electrolyti	c diss	ociatio	m				α
Valency of an ion	•						Z
Ionic strength .	:	•					Ī
	•	•	-			•	
Equivalent conducta	nce	tance	"mo	hilitv	;,	•	/l l (with subscript)
Transport number	maac	tance,	mo	omey		•	T (with subscript)
Transport number	•	•	•	•	•	•	<i>n</i> (with subscript)
Single electrode pote	ential	•	•	•	•	•	e (with subscript), E (with subscript)
Electrolytic polarisat	tion, o	overvo	oltage	•	•	•	ηπ
			Ma	gnet i st	n.		
Magnetic field streng	rt h						Н
flux .							φ
nermeabili	- tv	-	-				т Ц
suscentibili	itvv	zolume	•				к
Subcoption	1	mass					v
moment		11400	•		•	•	л М
induction	•	•	•		•	•	B
maaction	•	•	•	•	•	•	
			0	ptics.			
Wave length .		•	•	•	•	•	λ
Wave number.	•	•	•	•	•	•	r
Intensity of light	•	•	•	•		•	Ι
Refractive index	•	•	•	•	•	•	<i>n</i> (with subscript) μ (with subscript)
specific refraction					•		r (with subscript)
molecular refractio	n						[R] (with subscript)
Molar extinction coe	fficien	t					÷ - ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Angle of (optical) rot	tation						α
specific rotation							[α]
Specific magnetic rol	ation	-	•	•	•	•	ω

3. To be Printed in Roman, when not Greek.

(a) Examples of Mathematical Constants and Operators.

Base of natu Ratio of circ	ral log umfer	garithr ence to	ns o dia	meter	•	•	•	e π
Differential								d
partial							•	9
Increment		•		•	•		•	Δ
very small	incre	ment	•	•	•	•	•	δ
Sum .			•	•	•	•		Σ
Product .			•	•		•		Π
Function	•		•	•	•	•	•	f, φ

*Ampère	(in su	ıb-ur	nts)	•	•	•	•	•	a.
Volt	•	•	•	•	•	•	•	•	v.
Ohm	•	•	•	•	•	•	•	•	Ω.
Watt			•		•	•	•		w.
Farad			•		•				F.
Henry	•	•	•	•	•	•	•	•	н.
Centigrad	le	•	•	•	•	•			c.
Fahrenhe	eit	•				•		•	F.
Kelvin		•	•	•	•		•	•	к.
Angstron	n unit	t	•				•		А.
micron			•		•	•			μ.
metre	•	•	•	•	•	•	•	•	m.
gram		•	•		•	•			g.
litre	•	•	•	•	•		•	•	Ĭ.
Röntgen	unit	•	•	•		•	•		r.
†Normal	(cond	entra	ation)					•	N.
†Molar (conce	ntrat	ion) É	•	•				м.

• . .

. .

...

(b) Examples of single-letter abbreviations.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units :

М	mega-	$10^{6} \times$
k	kilo-	$10^3 \times$
d	deci-	10^{-1} $ imes$
с	centi-	10^{-2} $ imes$
m	milli-	10^{-3} $ imes$
μ	micro-	10 -6 ×

e.g., M Ω . denotes megohm; kw., kilowatt; and µg., microgram. The use of $\mu\mu$. instead of m μ . to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

I, II 1, 2 A B . i u	(especially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.							
+, -	referring to a positive or negative ion, or to a positive or negative electrode.							
p, v, T	indicating constant pressure, volume, and temperature respectively.							
g w p, c, g	indicating adiabatic conditions. indicating that no work is performed. with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.							
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.							
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublim- ation, transition, and dissolution or dilution respectively.							
с О	referring to a standard state, or indicating limiting value at infinite dilution.							

• E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère." † Separated by a hyphen (and no full stop) from a chemical formula which follows it.

0, D F

with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

	(b) Other modifying signs.
0	as right-hand superscript to symbol (particularly to a symbol for general thermodynamic function—see p. 718), referring to standard state
[]	enclosing formula of chemical substance, indicating its mola concentration.
{ }	enclosing formula of chemical substance, indicating its mola activity.

In crystallography it is recommended that.

Millerian indices be enclosed in parentheses, (); Laue indices be unenclosed; Indices of a plane family be enclosed in braces, { }; Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

upper left mass number of atom. lower left nuclear charge of atom. lower right number of atoms in molecule. e.g., ${}_{2}^{2}Li$; ${}_{1}^{2}H_{2}$ (= D₂).

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area.
- A. Angstrom unit.
- *a* activity; (acceleration).
- a. ampère, in sub-units-see footnote, p. 988.
- *B* magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- c velocity of light in vacuo.
- c velocity; concentration.
 - with subscript : specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- ∂ partial differential.
- *E* energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.

with subscript : single electrode potential.

- e electronic charge—charge equal and opposite in sign to that of an electron.
- e quantity of electricity, especially electrostatic charge.
 - with subscript : single electrode potential.

- e base of natural logarithms.
- F Faraday's constant.
- F force; (free energy—Helmholtz).
- F. farad; Fahrenheit.
- f acceleration; activity coefficient, for molar concentration; partition function.
- f function.
- G thermodynamic potential, Gibbs function, free energy—G. N. Lewis.
- g acceleration due to gravity, standard value.
- g acceleration due to gravity, as a variable; osmotic coefficient.
- g. gram. H entha
- *H* enthalpy, total heat, heat content; magnetic field strength.
- н. henry.
- h Planck's constant.
- h height.
- I moment of inertia; ionic strength; electric current; intensity of light.
- *i* vapour pressure constant; van 't Hoff's factor.
- J mechanical equivalent of heat.
- J gram-equivalent weight.
- K chemical equilibrium constant; (compressibility). K, solubility product.
- к. Kelvin.
- **k** Boltzmann's constant.
- k thermal conductivity; velocity constant of chemical reaction.
- L latent heat per mol; self inductance; (solubility product).
- latent heat per g.; length; mean free path of molecules. with subscript: equivalent ionic conductance, "mobility".
 litre.
- M molecular weight; mutual inductance; magnetic moment.
- M. molar concentration.
- m rest mass of an electron.
- m mass.
- m. metre.
- **N** Avogadro's number.
- N mol fraction.
- N. normal concentration.
- n number of mols. with subscript : (transport number). with subscript : refractive index.
- *P* pressure.
- [P] parachor.
- p pressure. Q quantity
- *Q* quantity of electricity.
- q heat entering a system.
- **R** gas constant per mol; Rydberg's constant.
- *R* electrical resistance.
- [R] with subscript: molecular refraction.
- r radius; (specific resistance). with subscript: specific refraction.
- r. Röntgen unit.
- S entropy.
- s solubility; (surface area).
- T temperature, on absolute Kelvin scale. with subscript : transport number.
- t time; (temperature—not on absolute scale).
- U intrinsic energy.
- *u* velocity component.
 - with subscript : velocity of ions.
- V volume; potential, potential difference, including Volta potential.

- v. volt.
- volume; velocity; velocity component. 1)
- W (work done by or on a system).
- w. watt.
- work done by or on a system; velocity component. 70
- force component; potential gradient in electric field. X
- mol fraction. x
- Y force component.
- Ζ force component; g.-equivalent weight; number of molecular collisions per second; atomic number.
- z valency of an ion.
- degree of electrolytic dissociation; angle of optical rotation. α
- [α] specific optical rotation.
- Γ surface concentration excess.
- ratio of specific heats; surface tension. γ
- Δ increment.
- δ very small increment.
- dielectric constant; molar extinction coefficient. €
- ζ electrokinetic potential.
- efficiency of any process; viscosity; electrolytic polarisation, overvoltage. η θ
- angle of contact; temperature-not on absolute scale.
- compressibility; specific conductance; magnetic susceptibility-volume. κ
- equivalent conductance. Λ
- wave length. λ
- chemical potential; dipole moment; magnetic permeability. μ with subscript : (refractive index).
- micron. 1 μ.
- frequency; wave number. v
- Π pressure, especially osmotic pressure.
- Π product.
- (electrolytic polarisation, overvoltage). π
- ratio of circumference to diameter. π
- density; specific resistance. ρ Σ
- sum.
- diameter of molecules; (surface tension); (specific conductance). σ
- time interval, especially half or mean life. τ
- ø fluidity; electronic exit work function; magnetic flux.
- φ function.
- magnetic susceptibility-mass.
- χ ψ wave function.
- Ω. ohm.
- angular velocity; specific magnetic rotation. ~